Première Spécialité

Thème : Constitution et transformations de la matière

Cours

Chapitre 13 : La polarité des entités chimiques

I <u>Les différentes formules d'une molécule</u>

Une molécule peut être représentée par	:
--	---

- Sa Elle indique la nature et le nombre des atomes qui la composent.
- Sa Elle s'obtient à partir de la formule développée. Elle ne représente pas les liaisons covalentes concernant les atomes d'hydrogène.

Exemple:

Nom de la molécule	Formule brute	Formule développée	Formule semi-développée
		H	
Acide éthanoïque		H-C-C-O-H 	
		н О	

Exercice : compléter le tableau suivant :

	Utilisation	Formule développée	Formule semi-développée
Ethanol	L'éthanol est utilisé comme désinfectant		
	et est également présent dans les		
0 80	boissons alcoolisées.		Formule brute :
Urée			
ONNO	L'urée est produite par le foie et est éliminée dans les urines.		Formule brute :
Acide lactique			Tormale orace .
	L'acide lactique n'est pas seulement présent dans le lait. Il apparaît dans les muscles lors d'un effort et est à l'origine des crampes.		Formule brute :

II <u>Le schéma de Lewis</u>

1) Le schéma de Lewis d'un atome et d'un ion monoatomique

Le schéma de Lewis d'un atome représente la

Le noyau et les couches électroniques internes sont représentés par le symbole de l'atome. Les électrons de valence sont représentés par des points • que l'on répartit l'un après l'autre sur les quatre « côtés » du symbole.						
Par conséquent, à partir du 5 ^{ème} électron de valence, ceux-ci se retrouvent « par deux » sur chaque côté et	forment					
des						
On peut donc trouver autour du symbole de l'atome : > des électrons seuls appelés «	-					
<u>Exemple</u> : Le soufre (Z = 16) a pour configuration électronique 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ . La couche de valence a pour configuration						

Schéma de Lewis des atomes courants :

Atome	Hydrogène H	Oxygène O	Carbone C	Argon Ar	Aluminium Al	Chlore Cl	Azote N
Configuration électronique	1s ¹	$ \begin{array}{c} 1s^2 \\ 2s^2 2p^4 \end{array} $	$1s^2$ $2s^2 2p^2$	$ \begin{array}{c} 1s^2 \\ 2s^2 2p^6 \\ 3s^2 3p^6 \end{array} $	$ \begin{array}{r} 1s^2 \\ 2s^2 2p^6 \\ 3s^2 3p^1 \end{array} $	$1s^2$ $2s^2 2p^6$ $3s^2 3p^5$	$1s^2$ $2s^2 2p^3$
Nombre d'électrons de valence							
Schéma de Lewis							

Le raisonnement est le même pour un ion monoatomique, en tenant compte des électrons en plus ou en moins.

Ion	Oxyde	Chlorure	Sodium
Formule de l'ion	\mathbf{O}^{2-}	Cℓ-	Na ⁺
Pour donner l'ion, l'atome :	électrons	électron	électron
Configuration électronique de l'ion			
Nombre d'électrons de valence			
Schéma de Lewis			

2) <u>Le schéma de Lewis d'une molécule</u>

Le schéma de Lewis d'une molécule s'établit en assemblant les schémas de Lewis des atomes.

face à face s'assemblent et forment alor	'S
Il s'agit bien de la mise en commun de deux électrons de valence par	deux atomes, donc
d'une	

<u>Exemple</u>: Formation de la molécule de dichlore $C\ell_2$:

Le schéma de Lewis fait donc apparaître les doublets liants **et** les doublets non liants. La formule développée ne fait apparaître quant à elle que les doublets liants.

Exemple : la molécule de dioxyde de carbone CO₂ contient un atome de carbone et de deux atomes d'oxygène.

- Le carbone a 4 électrons de valence. Son schéma de Lewis contient 4 électrons célibataires. Il va donc former 4 liaisons covalentes.
- L'oxygène a 6 électrons de valence. Son schéma de Lewis contient 2 doublets non liants et 2 électrons célibataires. Il va donc former 2 liaisons covalentes.

Les électrons célibataires vont s'apparier par deux.

Schéma de Lewis du dioxyde de carbone

- Autour de chacun des deux atomes d'oxygène, on trouve 2 doublets non liants (soit 4 électrons) et 2 liaisons covalentes (soit 4 électrons). Au total, il y a 8 électrons autour de l'atome d'oxygène, comme le gaz noble le plus proche.
- Autour de l'atome carbone, on trouve 4 liaisons covalentes (soit 8 électrons). Au total, il y a 8 électrons autour de l'atome de carbone, comme le gaz noble le plus proche.

Schéma de Lewis de quelques molécules :

Méthane CH ₄	Chlorure d'hydrogène HCℓ	Eau H ₂ O
Dioxygène O ₂	Diazote N ₂	Ammoniac NH ₃
Cyanure d'hydrogène HCN	Méthanal CH ₂ O	
(Carbone au milieu)	(Carbone au milieu)	Méthylamine CH ₃ – NH ₂

3) Le schéma de Lewis d'un ion polyatomique

Un ion polyatomique n'est pas formé à partir d'un atome, il est formé à partir d'une molécule qui a gagné ou perdu un ou plusieurs électrons.

Il faut ajouter ou enlever ces électrons à la structure complète et non à un atome en particulier. On obtient alors le schéma de Lewis de l'ion dans lequel.....

.....

Pour construire un schéma de Lewis « plus précis », on localise la charge sur un atome précis de l'ion, selon des règles arbitraires. Cette charge attribuée à un atome de manière arbitraire s'appelle une
On attribue une en comparant le nombre d'électrons de valence qu'il possède dans l'ion au nombre qu'il est censé posséder à l'état isolé à l'atome, on lui attribue une Si l'atome a, on lui attribue une
Une liaison covalente correspond à un électron de valence par atome.
Exemples: • L'ion ammonium NH4+ L'atome d'azote est censé posséder Dans l'ion ammonium, 4 liaisons covalentes partent de l'atome d'azote central. Celui-ci possède donc Charge formelle • L'ion hydroxyde HO- L'atome d'oxygène est censé posséder Dans l'ion hydroxyde, l'atome d'oxygène possède 3 doublets non liants (donc 6 électrons) et un électron correspondant à la liaison covalente. Il possède donc au total Il a donc On lui attribue une charge formelle • L'ion oxonium H3O+ Dans l'ion oxonium, l'atome d'oxygène possède 1 doublet non liant (donc 2 électrons) et 3 électrons correspondant aux liaisons covalentes. Il possède donc au total Charge formelle On lui attribue une charge formelle
4) <u>La lacune électronique</u>
Dans certaines molécules, l'atome central n'a pas la configuration électronique du gaz noble le plus proche, appelés
Exemples: • Le borane BH3 La configuration électronique de l'atome de Bore (Z = 5) est 1s² 2s² 2p¹. Il possède donc à l'état isolé 3 électrons de valence et forme 3 liaisons covalentes avec 3 atomes d'hydrogène. Grâce à ces 3 liaisons covalentes, l'atome de bore se retrouve entouré de

III La géométrie des molécules

1) La représentation de Cram

Voici le modèle moléculaire de la molécule de méthane CH₄:

On constate que cette molécule n'est pas plane. Il est donc difficile à première vue de la représenter sur une feuille de papier.

Pour représenter la géométrie dans l'espace de certaines molécules qui ne sont pas planes, on utilise la

Les liaisons sont représentées selon la convention suivante :

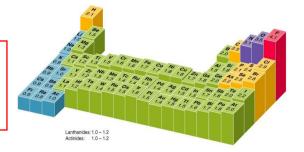
- Les liaisons dans le plan sont représentées par des traits pleins : ——
- Les liaisons en avant du plan sont représentées par un triangle noir plein :

Remarque: On doit cette représentation au chimiste américain Donald J. Cram (Prix Nobel de Chimie en 1987).

2) La théorie VSEPR

, mise au point par le chimiste britannique Ronald Gillespie en 1957, permet en partant d'un principe simple :			

<u>Remarque</u>: VSEPR signifie: « Valence Shell Electronic Pairs Repulsion », ce qui signifie: « Répulsion des Paires Electroniques de la couche de Valence. »


Pour connaître la géométrie autour d'un atome, il faut compter le nombre de liaisons autour de lui et le nombre de doublets non liant.

de doublets non liant.							
Molécule	Schéma de Lewis	L'atome central noté A :	Répartition des doublets dans l'espace	Modèle moléculaire	Géométrie		
Méthane CH4	H H—C—H H	Lié à 4 atomes X Type					
Ammoniac NH ₃	$H-\overline{N}-H$	Lié à 3 atomes X et possède 1 doublet non liant <i>Type</i>					
Eau H ₂ O	н- <u>о</u> -н	Lié à 2 atomes X et possède 2 doublets non liants Type					
Méthanal CH ₂ O	H-C-H	Lié à 3 atomes X Type					
Cyanure d'hydrogène HCN	H-C≡NI	Lié à 2 atomesX Type	33 8	0-0-0			

IV Les molécules polaires et apolaires

1) L'électronégativité

L'<u>électronégativité</u> d'un élément chimique est une grandeur sans unité, désignée par la lettre grecque khi :
Elle représente la

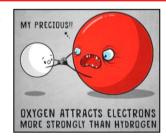
 $\underline{Exemple}: \chi(O) = 3,5$

$$\chi(C) = 2.5$$

Plus un élément chimique est, et plus il est

2) Les liaisons polarisées

Dans la liaison covalente A - B, si l'atome B est **plus électronégatif** que l'atome A, alors l'atome B « **attire plus** » les électrons de la liaison, le doublet d'électrons est statistiquement plus proche de B que de A.


- l'atome porte une charge électrique partielle
- l'atome _____ porte une charge électrique partielle

 $\mathsf{A} -\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!- \mathsf{B}$

Une flèche sur la liaison indique le sens de polarisation, c'est-à-dire le sens de déplacement des électrons de la liaison vers l'atome le plus électronégatif.

 $\underline{\textit{Exemple}}: \chi(O) \ge \chi(H):$ la liaison O-H est polarisée.

L'atome d'oxygène attire plus les électrons de la liaison. Il porte donc une charge partielle négative δ^- .

3) Les molécules polaires et apolaires

Comment savoir si une molécule est polaire ?

Pour **chaque** liaison, calculer $\Delta \chi$

 $\Delta \chi < 0.4$ pour **toutes** les liaisons Liaisons

Molécule

Exemple: CH₄

 $\Delta \chi \ge 0.4$ pour au moins une liaison

Liaison

- Tracé de la molécule avec sa géométrie
- Placement des δ^+ et δ^-
- Placement des G⁺ et G⁻

G⁺ et G⁻ différents

Molécule

 $Exemple: H_2O$

G⁺ et G⁻ confondus

Molécule

 $\textit{Exemple}: CO_2$