

Première Spécialité

Thème : L'énergie : conversions et transferts

Cours

Chapitre 17 : Le théorème de l'énergie mécanique

I Forces conservatives et non conservatives

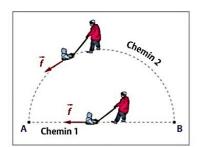
1)	Forces	conservatives

Une <u>force conservative</u> est une force							
Nous avons démontré dans le chapitre précédent que l'fonction de l'altitude y_A du point de départ A et de l'altitude y_B du point d'arrivée B selon la relation :	e travail du poids exercé sur un système s'exprime e $W_{AB}(\vec{P})$: Travail du poids en						
Exemple: Sur le schéma suivant, le travail du poids que le système suive les chem les altitudes des points A et B sont les mêmes. Le travail du poids est donc	ins \mathcal{C}_1 , \mathcal{C}_2 ou \mathcal{C}_3 car						

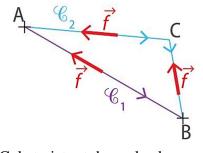
2) Forces non conservatives

Une <u>force non conservative</u> est une force

Exemple: les forces de frottement avec une surface ou un fluide.


Nous avons vu au chapitre précédent que l'expression du travail d'une force de frottement **d'intensité** constante *f*, sur un déplacement rectiligne d'un point A à un point B est :

 $\underline{\textit{Exemple}}$: Sur le schéma suivant, le travail de la force de frottement \vec{f} vaut :


• Sur le chemin \mathcal{C}_1 , $W_{AB}(\vec{f}) = -f \times AB$

• Sur le chemin \mathcal{C}_2 , $W_{AB}(\vec{f}) = -f \times (AC + CB)$ car le système passe par C, le trajet est donc plus long.

Ces deux valeurs sont différentes car A, B et C ne sont pas alignés, donc \vec{f} est une force non conservative.

Doc. 3. Le travail de la force de frottement dépend du chemin suivi : $|W_{AB}(\tilde{f})$ (chemin 1) $|<|W_{AB}(\tilde{f})$ (chemin 2)|.

II <u>L'énergie potentielle</u>

1) Définition de l'énergie potentielle

On considère une force conservative notée \vec{F} . Le travail de cette force ne dépend que des positions initiale e finale A et B du trajet. Ce travail peut alors s'exprimer comme la différence entre la valeur d'une grandeur, nommée, prise en A, et la valeur de cette même grandeur prise en B.
est associée une telle que :
Remarque: on ne peut pas associer à une force non conservative une énergie potentielle car son travail dépend du chemin suivi.
2) <u>Energie potentielle de pesanteur E_{pp}</u> L' <u>énergie potentielle de pesanteur</u> E _{pp} est associée au qui est une force conservative.
Soit une grandeur X dont la valeur varie d'une valeur initiale X_i à une valeur finale X_f . La variation de la grandeur X est notée ΔX et s'écrit
Par ailleurs, le travail du poids s'écrit : $W_{AB}(\vec{P}) = \dots$
On en déduit que : $\Delta E_{pp} = \dots$
On en déduit :
L'énergie potentielle de pesanteur E _{pp} est l'énergie emmagasinée par l'objet et due à la hauteur à laquelle il se trouve.
Du fait de son altitude par rapport au sol, un objet possède de l'énergie en réserve, qu'il peut « potentiellement » restituer.

$\underline{\textit{Remarque}}$: En réalité, l'énergie potentielle de pesanteur est définie par : $E_{pp} = m \ g \ y + \dots$ Cependant, on peut choisir comme on veut le niveau de référence de l'énergie potentielle de pesanteur. On choisit donc en général le niveau de référence pour avoir l'expression simplifiée : $E_{pp} = m \ g \ y$. On prend pour cela		
Exemple: Calculer l'énergie potentielle de pesanteur d'un pot de fleur de masse $m = 3.0$ kg, posé sur le rebord d'une fenêtre située à 5,0 m du sol. On fixe la référence d' E_{pp} au niveau du sol.		
III <u>L'énergie mécanique</u>		
1) <u>Définition de l'énergie mécanique</u>		
Si le poids est la seule force conservative que subit un système, l'énergie mécanique du système, notée E_m , est égale à la somme de son énergie cinétique E_c et de son énergie potentielle de pesanteur E_{pp} :		
On démontre que :		
La variation d'énergie mécanique d'un système est égale à la somme de la variation de son énergie cinétique et de la variation de son énergie potentielle de pesanteur.		
Exercice: Calculer l'énergie mécanique d'un dromadaire de masse $m = 350 \text{ kg}$ se déplaçant à la vitesse de 1,8 km.h ⁻¹ sur une dune haute de 100 m par rapport l'origine de l'énergie potentielle de pesanteur.		
2) Théorème de l'énergie mécanique		
On va exprimer les variations d'énergie cinétique et d'énergie potentielle de pesanteur ΔE_c et ΔE_{pp} avec ce qui a déjà été vu, puis on va les « réinjecter » dans l'expression :		
• D'après le théorème de l'énergie cinétique, la variation d'énergie cinétique ΔE_c du système entre les points A et B est égale à la somme des travaux des forces qu'il subit :		
• On a vu que la variation d'énergie potentielle du système qui va d'un point A à un point B est égal à l'opposé du travail de la force conservative sur le trajet AB :		
• Dans l'expression $\Delta E_m = \Delta E_c + \Delta E_{pp}$, on remplace ΔE_c et ΔE_{pp} par celles avec les travaux des forces :		
Soit un système soumis uniquement à son poids \overrightarrow{P} et à des forces non conservatives $\overrightarrow{F_{nc}}$.		

3)	Conservation	de	<u>l'énergie</u>	mécanique	
----	--------------	----	------------------	-----------	--

Si le système ne subit pas de forces non conservatives (en général : pas de fronul (forces perpendiculaires au déplacement), alors	• • • • • • • • • • • • • • • • • • • •				
<u>Remarque</u> : cela explique le nom des forces « conservatives » : elles entra mécanique.	inent la conservation de l'énergie				
<u>Exemple</u> : Graphique représentant l'évolution des énergies d'un solide en ch i	ute libre sans frottements.				
Son altitude diminue : son	Energie mécanique				
• Au cours de la chute, sa vitesse augmente : son	Energie potentielle				
• Son	de pesanteur				
20	Energie cinétique				
10	cinetique				
	Temps (ms)				
<u>Exemple</u> : Graphique représentant l'évolution des énergies d'un solide lancé en l'air et en chute libre sans frottements .					
 Son altitude augmente puis diminue, ainsi que son énergie potentielle de pesanteur; Sa vitesse et donc son énergie cinétique diminuent jusqu'à son altitude maximale, puis augmentent à nouveau; Son 	20 - 10 - 2 4 6 8 10 12 14 t(s)				
4) Non-Conservation de l'énergie mécanique					
Quand un solide chute dans l'air (comme une météorite entrant dans l'atn que l'on r					
négligés. On observe que					
mesure de la trajectoire car les forces de frottements sont résistantes. au fur et à $\frac{F(J)}{15}$					
En présence de forces non conservatives qui travaillent, l'énergie mécanique ne se conserve pas. On observe :	5 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 t(s)				
•					