

Première Spécialité

Thème: Mouvement et interactions

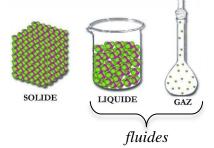
Cours

Chapitre 20 : Description d'un fluide au repos

I <u>Description microscopique d'un fluide</u>

1) Définition

Par opposition à un solide, un **fluide** n'a pas de forme propre. Il est susceptible de s'écouler et prend la forme du récipient qui le contient.


On distingue deux types de fluide :

- les gaz qui occupent tout le volume disponible. Ils sont compressibles : on peut changer leur volume.
- les <u>liquides</u> qui ont un volume constant. Ils sont <u>incompressibles</u> : il n'est pas possible de les comprimer.

2) Description microscopique d'un fluide

On décrit le fluide comme étant un **ensemble désordonné de particules** (molécules ou atomes). Ces particules ont en effet un mouvement d'agitation permanent qui explique qu'un fluide puisse se déformer facilement.

- Pour un **liquide**, ces particules sont en contact, **très proches** les unes des autres. Elles peuvent « glisser » les unes sur les autres.
- Dans un gaz, elles sont très éloignées les unes des autres, avec de grands espaces vides entre elles. Elles sont très agitées et sont en mouvement désordonné les unes par rapport aux autres.

1/4

3) Description macroscopique d'un fluide

Il est impossible de connaître le comportement de chaque particule constituant un fluide. Pour décrire celui-ci, des grandeurs macroscopiques (mesurables à notre échelle) sont utilisées, elles reflètent le comportement microscopique des particules.

Ces grandeurs sont la masse volumique, la température et la pression du fluide.

a) La masse volumique

La <u>masse volumique</u>, notée ρ (rho) est liée au nombre de particules par unité de volume. Elle se mesure en kilogramme par mètre cube (kg.m⁻³) dans les unités légales.

Dans un liquide, les particules sont très proches les unes des autres, il y en a donc beaucoup plus dans un même volume que dans un gaz.

Ainsi, la masse volumique des liquides est bien supérieure à celle des gaz.

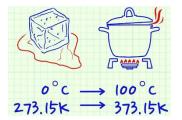
Quelques masses volumiques de gaz (kg·m ⁻³)		Quelques masses volumiques de liquides (kg \cdot m $^{-3}$)	
Air 0 °C	1,293	Eau 20 °C	1 000
Air 20 °C	1,204	Éthanol 20°C	789
Hélium 0 °C	0,178	Glycérine 20 °C	1 260

 $\underline{\textit{Rappel}}$: la masse volumique est définie par la relation : $\rho = \frac{m}{V}$ avec m en kilogramme et V en m³.

b) La température

La température d'un fluide est liée à la **vitesse** de ses constituants. Plus la température est grande, plus leur vitesse est importante. A 20°C, la vitesse moyenne des molécules constituant l'air est d'environ 500 m.s⁻¹ (c'est-à-dire 1 800 km.h⁻¹ !!). Elle atteint près de 600 m.s⁻¹ à 100°C.

Quand il n'y a plus de mouvement des molécules, on obtient la température la plus basse possible qui vaut – 273,15°C, c'est une limite basse. En revanche, la température peut être aussi élevée que l'on veut !


Les physiciens ont voulu que les températures se comptent à partir du plancher de température. Une nouvelle unité de mesure de la température est née, graduée en **kelvin** (symbole : K).

C'est la même échelle que celle des degrés Celsius mais décalée vers le bas de 273,15 unités.

La température en degré Celsius (°C) est souvent notée θ (thêta) pour ne pas la confondre avec la température T en kelvin

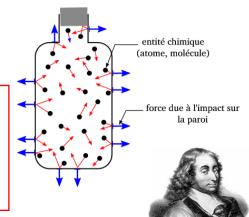
Attention: on dit « kelvin » tout court, et non « degré kelvin ».

Pour convertir une température de degré Celsius (°C) en kelvin, on utilise : $T \ (en \ K) \ = \ \theta \ (en \ ^{\circ}C) + 273,15$

Exemple: Pour $\theta = 25^{\circ}$ C, on a T = 25 + 273,15 = 298,15 K.

Pour $\theta = 0$ °C, on a T = 0 + 273,15 = 273,15 K

La <u>température</u>, notée T, est une grandeur liée à l'agitation des particules, appelée agitation thermique. Elle s'exprime en kelvin (symbole : K). Plus la température est élevée, plus les particules sont agitées.


c) La pression

A cause de l'agitation thermique, les particules d'un fluide entrent constamment **en collision avec les parois** du récipient qui les contient. Ces chocs sont à l'origine d'une action mécanique exercée par le fluide sur la paroi, qui est responsable de la **pression** du fluide.

La <u>pression</u> d'un fluide, notée P, rend compte de la fréquence des chocs des particules contre une paroi.

Elle se mesure en pascal (symbole : Pa) avec un manomètre.

Plus la pression est élevée, plus la fréquence des chocs sur la paroi est importante.

Cette unité rend hommage aux travaux de Blaise Pascal (1623 - 1662) sur les fluides et la notion de pression.

L'unité légale de pression est le pascal, mais on utilise également très souvent :

- l'hectopascal (symbole : hPa) : 1 hPa = 10² Pa, souvent utilisé en météorologie.
- le **bar** (symbole : bar) : 1 bar = 10^5 Pa = 1000 hPa.
- l'atmosphère (symbole : atm) : 1 atm = 101 325 Pa ≈ 1 bar. Elle représente la pression atmosphérique moyenne au niveau de la mer.

II La force pressante

L'action mécanique exercée par le fluide est modélisée par une force appelée **force pressante**. Cette force est toujours **perpendiculaire** à cette paroi et dirigée du fluide vers l'extérieur.

Par définition, la norme de la force pressante est donnée par la relation :

 $\mathbf{F} = \mathbf{P} \times \mathbf{S}$

F: norme de la force pressante en newton (N)

P: pression du fluide en pascal (Pa)

S : surface de la paroi en mètre carré (m²)

Doc. 6.
La force
pressante est
perpendiculaire
à la paroi.

On en déduit : $P = \frac{F(en N)}{S(en m^2)}$ Une pression de 1 Pa correspond à une force de 1 N exercée sur 1 m².

La pression atmosphérique moyenne au niveau de la mer vaut 1 013 hPa = 101 300 Pa. Elle correspond donc à une force de 101 300 N sur une vitre de 1 m^2 , ce qui représente le poids d'une masse d'environ 10 t!

Exercices:

1) Un fluide exerce une pression de 8,0 hPa. Il est en contact avec une paroi de 4,0 m². Calculer la force pressante exercée sur cette paroi.

Pression :
$$P = 8.0 \times 10^{2} \text{ Pa}$$
 Force pressante : $F = P \times S = 8.0 \times 10^{2} \times 4.0 = 3.2 \times 10^{3} \text{ N}$

2) Une paroi de 30 m² subit une force pressante de 3,0 \times 10⁶ N. Calculer la valeur de la pression du fluide.

Pression du fluide : P =
$$\frac{F}{S} = \frac{3.0 \times 10^6}{30} = \frac{1.0 \times 10^5 \, Pa}{1.0 \times 10^5 \, Pa}$$

III La loi de Mariotte

Cette loi concerne uniquement les gaz qui sont compressibles, leur volume peut changer et dépend de la pression.

A température constante et pour une quantité de matière de <u>gaz</u> donnée, le produit de la pression P par le volume V est constant :

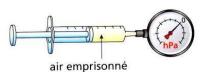
$$P \times V = constante$$

Cela signifie que la pression P d'un gaz est inversement proportionnelle à son volume V. Quand le volume V d'un gaz diminue, sa pression augmente.

La constante n'est ni une constante universelle, ni une donnée de l'énoncé. Il faut toujours traduire la loi de Mariotte en considérant le gaz dans l'état initial, où la pression vaut P_1 et le volume V_1 , et dans l'état final où la pression vaut P_2 et le volume V_2 , puis écrire : $P_1 \times V_1 = P_2 \times V_2$

 $\underline{Remarque\ n^{\circ}1}$: Cette loi a en fait été découverte d'abord par Robert Boyle, physicien et chimiste irlandais, puis redécouverte un peu plus tard, indépendamment de Boyle par Edme Mariotte, physicien et botaniste français.

Cette loi est donc souvent appelée « **loi de Boyle-Mariotte** », et même plus simplement « loi de Boyle » dans le monde anglo-saxon. En France, on préfère « loi de Mariotte » ...



<u>Remarque $n^{\circ}2$ </u>: La loi de Mariotte est un modèle qui décrit correctement des gaz aux faibles pressions. Pour des pressions importantes, il existe d'autres modèles.

<u>Exercice</u>: On place 50 cm³ d'air à pression atmosphérique (1 013 hPa) dans une seringue fermée. Calculer la pression de l'air dans la seringue quand on le comprime jusqu'à un volume de 30 cm³.

Etat initial: $P_1 = 1 \ 013 \ hPa$ $V_1 = 50 \ cm^3$ Etat final: P_2 ? (en hPa) $V_2 = 30 \ cm^3$

On peut laisser ces unités, car les unités de volume vont s'annuler et la pression P₂ sera en hPa.

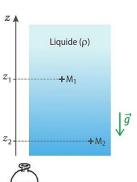
La loi de Mariotte permet d'écrire :
$$P_2 = \frac{P_1 \times V_1}{V_2} = \frac{1013 \times 50}{30} = \underline{1.7 \times 10^3 \text{ hPa}}.$$

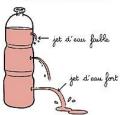
Le gaz est comprimé, la pression augmente.

IV La loi fondamentale de la statique des fluides

Cette loi concerne uniquement les fluides **incompressibles**, c'est-à-dire les **liquides**, et **au repos**. On parle de statique des fluides.

<u>Remarque</u>: Quand le liquide s'écoule (bouge), on parle de dynamique des fluides. Cette notion sera vue en spécialité Physique en Terminale.


On constate que plus on plonge au fond d'une piscine ou dans un océan, plus la pression est importante.


Sur le schéma, la pression au point M_2 est supérieure à la pression au point M_1 .

La pression d'un liquide augmente avec la profondeur.

Dans une bouteille d'eau, la pression est plus forte au fond de la bouteille que proche de la surface. Si on perce des trous à différentes altitudes, la force pressante $(F = P \times S)$ sera plus grande au fond de la bouteille, le jet d'eau qui sort sera donc plus fort.

On peut montrer que, dans un liquide, la différence de pressions en deux points est proportionnelle à la différence d'altitude entre les deux points.

Pour un fluide incompressible et au repos, la loi fondamentale de la statique des fluides s'écrit :

$$P_1 - P_2 = -\rho g (z_1 - z_2)$$

 P_1 et P_2 : pressions aux points M_1 et M_2 en pascal (Pa)

ρ: masse volumique du fluide en kilogramme par mètre cube (kg.m⁻³)

g : intensité de la pesanteur en newton par kilogramme (N.kg⁻¹)

 z_1 et z_2 : altitudes des points M_1 et M_2 en mètre (m)

Si on prend un point M_1 d'altitude z_1 et un point M_2 d'altitude z_2 , on peut écrire :

$$P_1 - P_2 = -\rho g z_1 + \rho g z_2$$

$$P_1 - P_2 + P_2 = -\rho g z_1 + \rho g z_2 + P_2$$

$$P_1 = -\rho g z_1 + \rho g z_2 + P_2$$

$$P_1 + \rho g z_1 = -\rho g z_1 + \rho g z_2 + P_2 + \rho g z_1$$

La loi fondamentale de la statique des fluides peut également s'écrire : $P_1 + \rho g z_1 = P_2 + \rho g z_2$

$$\mathbf{P}_1 + \boldsymbol{\rho} \mathbf{g} z_1 = \mathbf{P}_2 + \boldsymbol{\rho} \mathbf{g} z_2$$

Remarque: Cette loi n'est valable que si l'axe z est orienté vers le haut, cela entraîne le signe « – ». Si l'axe z était orienté vers le bas, il ne faudrait pas mettre ce signe « – ».


On prend deux points M_1 et M_2 à la même altitude : $z = z_1 = z_2$, on applique la loi fondamentale de la statique des fluides : $P_1 - P_2 = -\rho g (z_1 - z_2)$

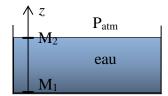
Or $z_1 = z_2$, donc $z_1 - z_2 = 0$.

On en déduit que $P_1 - P_2 = 0$

Donc
$$P_1 = P_2$$

Deux points à la même altitude ont la même pression.

Exercice: En plongeant au fond d'une piscine, on peut avoir mal aux oreilles, à cause de la pression exercée par l'eau sur les tympans. Calculer la pression au fond d'une piscine de 4,0 m de profondeur.


<u>Données</u>: $P_{atm} = 1 \ 013 \ hPa$ $\rho_{eau} = 1000 \ kg.m^{-3}$ $g = 9.81 \ N.kg^{-1}$

$$\rho_{\rm eau} = 1000 \; {\rm kg.m^{-3}}$$

$$g = 9.81 \text{ N.kg}^{-1}$$

On prend un point M_1 au fond de la piscine, d'altitude $z_1 = 0$ m et de pression P_1 , et un point M₂ en surface, d'altitude $z_2 = 4.0$ m et de pression P₂ égale à P_{atm}. La loi fondamentale de la statique des fluides permet d'écrire :

Attention: $P_{atm} = 1013 \text{ hPa} = 1013 \times 10^2 \text{ Pa}$ $P_1 = 1.013 \times 10^2 - 1000 \times 9,81 \times (0 - 4,0) = 1.013 \times 10^2 + 1000 \times 9,81 \times 4,0$ $P_1 = 1.4 \times 10^5 \, Pa \ (= 1405 \, hPa)$