Seconde

Cours

Chapitre 0 : Les outils en Physique Chimie

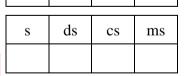
I <u>Les différentes grandeurs utilisées en Physique</u>

1) Les grandeurs, leur unité et leur instrument de mesure

Grandeur	Distance	Température	Masse	Volume	Temps	
Notation						
Unité						
Symbole de l'unité						
Exemple	Tour Eiffel :	Température d'ébullition de l'eau :	Masse moyenne d'un chat :	Volume d'une bouteille d'eau :	Durée d'une minute :	
Exemple						
d'instrument de mesure	111111111110000	235			(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	

2) Les conversions d'unités

• Tableau de conversion des mètres :


Tuoicua de conversión des menes:							• • • •			• • • • •		 		•
km	hm	dam	m	dm	cm	mm	\times	μm	\times	\times	nm	\times	pm	

Exercices:

b)
$$480 \,\mu\text{m} = \dots \dots \text{mm}$$

c)
$$3.5 \text{ dam} = \dots \text{mm}$$

d)
$$67,4 \text{ nm} = \dots \mu m$$

dag

g

hg

kg

• Tableau de conversion des litres et des mètres cube :

	km³		hm ³		dam ³		m ³		dm ³		cm ³		mm ³	

Exercices:

$$\overline{a}$$
) 25 dam³ = m³

c)
$$85 \text{ cm}^3 = \dots L$$

b)
$$320 \text{ mm}^3 = \dots \text{cm}^3$$

d)
$$7.5 \text{ hL} = \dots \text{dm}^3$$

II La notation scientifique et les puissances de 10

1) La notation scientifique

En sciences, il arrive qu'une mesure soit très grande ou très petite.

Exemples: distance Terre-Lune: 384 000 000 mètres taille d'une cellule: 0,00002 mètre

- La notation (ou l'écriture) scientifique d'un nombre est de la forme :
 - « a » est un nombre ayant un seul chiffre non nul ayant la virgule (compris entre 1 et 9,999 ...)
 - « p » est un entier relatif (positif ou négatif)

<u>Exemples</u>: 4×10^5

 7.42×10^{-1}

 1×10^8

 1.56×10^{-3}

• Pour écrire un nombre en notation scientifique, on compte le nombre de fois que l'on décale la <u>virgule</u> pour arriver à la notation scientifique : c'est la puissance correspondante.

Exemples:

 ${\rm distance\ Terre-Lune:384\ QQQ\ QQQ\ m\ =\ \dots\dots\ m\lceil}$

vers la vers la gauche droite

taille d'une cellule : $0,000,02 m = \dots m$

• Comment écrire $V = 3.5 \times 10^{-3}$ mL en notation décimale ?

C'est une puissance négative, le nombre est donc inférieur à 1, commençant par 0,...

On décale la virgule 3 fois vers la gauche pour « augmenter » la puissance de « +3 » et l'annuler.

$$V = 3.5 \times 10^{-3} \text{ mL} = 000000003.5 \times 10^{-3} \text{ mL} = 0.0035 \text{ mL}$$

Exercices: Donner la notation scientifique en mètre des longueurs suivantes:

- a) Rayon de la Terre : 6 380 000 m =
- b) Taille d'un globule rouge : 0,000012 m =
- c) Distance Lille Marseille: 969 000 m =
- d) Taille d'une fourmi : 0,005 m =

2) <u>Les conversions d'unités en utilisant les puissances de 10</u>

Quand on convertit une mesure dans l'unité de base (sans multiple), il est plus rapide d'utiliser les puissances de 10. Les puissances très souvent utilisées en Physique-Chimie sont :

kilo	milli	micro	nano	pico

On remplace la lettre du multiple par la puissance, sans changer le nombre à convertir. En effet, il n'est pas obligatoire d'écrire la mesure en notation scientifique.

Exemples: $V = 50 \text{ mL} = 50 \times 10^{-3} \text{ L}$

$$T = 0.57 \,\mu s = 0.57 \times 10^{-6} \,s$$

<u>Exercices</u>:

- \overline{a}) 2,3 ms = s
- c) $5\ 800\ km = \dots m$
- b) 890 pg = g
- d) 0,30 nm = m