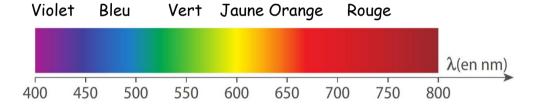


Seconde

Thème : Ondes et signaux

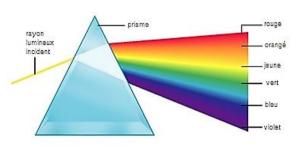
Cours

Chapitre 5 : La dispersion de la lumière et les spectres


I <u>Lumière et longueur d'onde</u>

Exemple: un LASER rouge de longueur d'onde $\lambda = 650$ nm

Une est composée de radiations.


Exemple: lumière blanche du Soleil ou d'une lampe à filament

En général, la couleur d'une lumière ne permet pas de savoir si elle est polychromatique ou monochromatique. <u>Exemple</u>: la lumière monochromatique d'un LASER rouge apparaît identique à celle, polychromatique, émise par une DEL rouge.

II Dispersion de la lumière par un prisme

Un ______ permettent de disperser la lumière. Ce sont des _____ La figure colorée obtenue sur l'écran s'appelle le ______.

Comment un prisme disperse-t-il la lu En traversant le prisme, la lumière subit colorées d'une lumière polychromatique ne su	ubit pas la réfraction de la mê	ème manière. Elles sont
air i1 i2 verre	Lumière blanche Prisme en verre n _{rouge} < n _{vert} < n _{violet}	Écran

D'après la loi de Snell-Descartes, lors de la première réfraction, l'angle de réfraction i_2 dépend de l'indice de réfraction n_2 et de l'angle d'incidence i_1 :

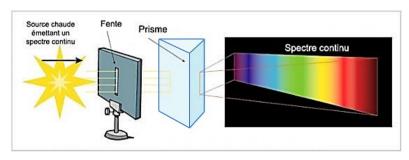
 $\sin i_2 =$

Comme toutes les radiations ont le même, les angles de réfraction i_2 différents selon les couleurs ne peuvent s'expliquer que si

La de la lumière par un prisme s'explique par

Exemple: Pour le verre « flint » à base d'oxyde de plomb, l'indice de réfraction vaut :

- pour une radiation violette de longueur d'onde $\lambda = 400 \text{ nm}$: n = 1,695
- pour une radiation jaune de longueur d'onde $\lambda = 600 \text{ nm}$: n = 1,670
- pour une radiation rouge de longueur d'onde $\lambda = 800 \text{ nm}$: n = 1,660


La différence entre les indices de réfraction est faible, mais suffisante pour provoquer une dispersion.

III <u>Les spectres continus d'origine thermique</u>

Lorsqu'un corps (solide, liquide ou gaz sous haute pression) est, il émet de la lumière, appelé rayonnement thermique, dont le, et ressemble à celui de,

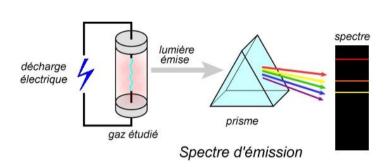
<u>Exemples</u>:

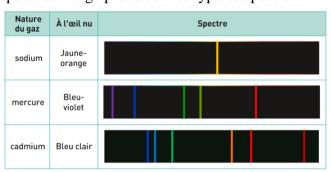
- Filament d'une lampe (2300°C)
- Lave d'un volcan (1200°C)
- Coulée d'acier (1560°C) ou de verre
- *Barre métallique chauffée (1000°C)*
- *Etoile (A la surface du Soleil : 5500°C)*

Le spectre de la lumière émise	

Écran vu de face

Quand on augmente la tension d'alimentation d'une lampe à
incandescence, le filament est progressivement.
Le filament commence par prendre une teinte
, puis et enfin
lorsque la lampe est alimentée normalement.
Sur le spectre, les radiations sont les
premières à apparaître, puis au fur et à mesure que la
température du filament augmente, le spectre se complète
progressivement vers le


Température	À l'œil nu	Spectre
1 500°C		
2 500°C		
5 500°C		


Doc. 7. Spectres du même corps porté à différentes températures.

La est donc directement liée à la

<u>Attention</u>: dans la vie courante, par convention, le rouge indique le chaud ou le bleu le froid, alors qu'une étoile rouge (Bételgeuse: surface à 3 300°C) est plus froide qu'une étoile bleue (Rigel: surface à 11 000°C).

IV Les spectres de raies

Doc. 9 Spectre de raies de quelques lampes spectrales.

Spectres continus d'origine thermique
Produit par un corps porté à haute température

Ne dépend que de la température

Ne dépend que de la nature du gaz

Ne dépend que de la nature du gaz