


Seconde

Thème : Constitution de la matière

Cours



# Chapitre 7 : La stabilité des éléments chimiques

# I <u>Le cortège électronique de l'atome</u>

| 1) Les c                                                                             | ouches et les sous-couches électroniques                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | uvement autour du noyau. Ils n'ont pas de trajectoire particulière, mais ils ne peuvent 'espace n'importe comment.                                                                                                               |
| est  • Chaque couche contenant                                                       | In atome se répartissent dans des                                                                                                                                                                                                |
| Ces couches et sous-couc<br>augmente en s'éloignant                                  | ches correspondent à différents niveaux dont l'énergie du centre de l'atome.                                                                                                                                                     |
|                                                                                      | nfiguration électronique d'un atome                                                                                                                                                                                              |
| La différentes sous-couches                                                          | d'un atome indique la répartition des électrons sur les électroniques.                                                                                                                                                           |
| <ul> <li>Les sous-couches<br/>Les sous-couches</li> <li>Jusqu'à 18 électr</li> </ul> | gles de remplissage des différentes sous-couches électroniques  peuvent contenir au maximum.  peuvent contenir au maximum.  rons, les sous-couches se remplissent dans l'ordre suivant :  couche est (ou saturée), on remplit la |
| dans une sous-couche                                                                 | nombre d'électrons avec le numéro de la couche, on écrit le, comme une puissance.  e 3p <sup>5</sup> contient                                                                                                                    |
| Configuration électronique                                                           | ne du phosphore (Z = 15). Il possède donc 15 électrons à placer.                                                                                                                                                                 |
| 15 électrons :                                                                       | couche n°1 couche n°2 couche n°3 : dernière couche occupée                                                                                                                                                                       |
| Jusqu'à 18 électrons,                                                                |                                                                                                                                                                                                                                  |
|                                                                                      | lans cette couche externe sont lesvalence d'un élément qui définissent                                                                                                                                                           |

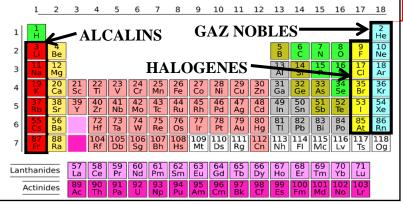
#### Exercice : Compléter le tableau suivant :

| Atome  | Numéro atomique Z | Configuration électronique | Nombre d'électrons de valence |
|--------|-------------------|----------------------------|-------------------------------|
| Azote  | Z = 7             |                            |                               |
| Hélium | Z=2               |                            |                               |
| Chlore | Z = 17            |                            |                               |
| Sodium | Z = 11            |                            |                               |

## II Le tableau périodique des éléments



Dmitri Mendeleïev


## 1) Structure du tableau périodique

Dans le tableau périodique, les éléments sont

Les éléments d'une ont des

Ils constituent une ont des

| n° de colonne      | Famille |
|--------------------|---------|
| (sauf l'hydrogène) |         |
|                    |         |
| (dernière colonne) |         |



Le tableau suivant est le **tableau périodique simplifié**. Il rassemble les 18 premiers éléments, présents dans les 3 premières lignes.

| Période<br>Ligne<br>Colonne         | 1                                                                                              | 2                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1                                   | <b>H</b> (Z = 1)<br>Hydrogène<br>1s <sup>1</sup>                                               |                                                                      |
| 2                                   | <b>Li</b> (Z = 3)<br>Lithium<br>                                                               | <b>Be</b> (Z = 4)<br>Béryllium<br>1s <sup>2</sup><br>2s <sup>2</sup> |
| 3                                   | Na (Z = 11)<br>Sodium<br>1s <sup>2</sup><br>2s <sup>2</sup> 2p <sup>6</sup><br>3s <sup>1</sup> | <b>Mg</b> (Z = 12)<br>Magnésium<br>                                  |
| Nombre<br>d'électrons<br>de valence |                                                                                                |                                                                      |

| 3                  | 4                            | 5                 | 6                   | 7                   | 8                           |
|--------------------|------------------------------|-------------------|---------------------|---------------------|-----------------------------|
|                    |                              |                   |                     |                     | <b>He</b> (Z = 2)<br>Hélium |
| <b>B</b> (Z = 5)   | <b>C</b> (Z = 6)             | <b>N</b> (Z = 7)  | <b>O</b> (Z = 8)    | <b>F</b> (Z = 9)    | <b>Ne</b> (Z = 10)          |
| Bore               | Carbone                      | Azote             | Oxygène             | Fluor               | Néon                        |
|                    |                              |                   |                     | 1s <sup>2</sup>     |                             |
|                    |                              |                   |                     | 2s² 2p <sup>5</sup> |                             |
| <b>Al</b> (Z = 13) | <b>Si</b> (Z = 14)           | <b>P</b> (Z = 15) | <b>S</b> (Z = 16)   | <b>Cl</b> (Z = 17)  | <b>Ar</b> (Z = 18)          |
| Aluminium          | Silicium                     | Phosphore         | Soufre              | Chlore              | Argon                       |
|                    | 1s <sup>2</sup>              |                   | 1s²                 |                     |                             |
|                    | 2 <i>s</i> ² 2p <sup>6</sup> |                   | 2s² 2p <sup>6</sup> |                     |                             |
|                    | 3 <i>s</i> ² 3p²             |                   | 3 <i>s</i> ² 3p⁴    |                     |                             |
|                    |                              |                   |                     |                     |                             |
|                    |                              |                   |                     |                     | (sauf l'hélium)             |

| Quand on change de ligne, on commence le remplissage d'une nouvelle couche électronique.                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Les éléments appartenant à une ont le                                                                                                                                                                                                                                                                                 |
| Les éléments appartenant à une ont le                                                                                                                                                                                                                                                                                 |
| Les électrons de valence donnent aux éléments leurs propriétés chimiques, c'est la raison pour laquelle léléments d'une                                                                                                                                                                                               |
| Le correspond aux atomes dont la dernière sous-couche occupée est une                                                                                                                                                                                                                                                 |
| L'hélium fait bien partie du bloc s car sa dernière (et seule) sous-couche occupée est la sous-couche 1s. Il de cependant être placé dans la dernière colonne car, inerte chimiquement. L'hélium est ainsi une exception dans le tableau périodique car il est « séparé » des autres éléments du bloc s.              |
| 2) <u>Position d'un élément dans le tableau périodique</u>                                                                                                                                                                                                                                                            |
| Il est possible de déterminer la                                                                                                                                                                                                                                                                                      |
| <ul> <li>le</li></ul>                                                                                                                                                                                                                                                                                                 |
| <ul> <li><u>Exemple</u>: L'atome d'azote a pour configuration électronique : 1s² 2s² 2p³.</li> <li>✓ Il possède couches électroniques occupées, il appartient donc à la du tableau périodiqu</li> <li>✓ Il possède électrons de valence, il appartient donc à la du tableau simplifié</li> </ul>                      |
| Remarque: La 3ème colonne du tableau simplifié est celle portant le n°13 dans le tableau périodique complet. La 4ème colonne correspond à la colonne n°14 et ainsi de suite.  En effet les éléments présents dans les colonnes 3 à 12 n'apparaissent qu'à partir de la quatrième ligne du tableau périodique complet. |
| <ul> <li>Exercices:</li> <li>a) Un atome a pour configuration électronique 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup>. A quelle ligne et à quelle colonne du table appartient-il?</li> </ul>                                                                                                         |
|                                                                                                                                                                                                                                                                                                                       |
| b) Un atome appartient à la 2 <sup>ème</sup> ligne et à la 7 <sup>ème</sup> colonne du tableau simplifié. Donner sa configuration électronique.                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                       |
| III <u>La stabilité chimique des gaz nobles</u>                                                                                                                                                                                                                                                                       |
| Les, autrefois appelés « gaz rares », constituent la famille d'éléments chimiqu située dans la                                                                                                                                                                                                                        |

| Dans la nature, les aton                                                                                     |                                                             |                                                      | -                                                           |                   |                  | E GASES                            |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------|------------------|------------------------------------|
| former des ions. Les gaz                                                                                     |                                                             |                                                      |                                                             |                   | 10               | AT ROKE A X                        |
| réactions chimiques.                                                                                         | s ne ioimem pa                                              | is a tons et no i                                    | participent que                                             | tres raiement a   | des              |                                    |
| Quelle est la particulari                                                                                    | té de leur confi                                            | iguration élect                                      | ronique ?                                                   |                   |                  |                                    |
| Gaz noble                                                                                                    | Hélium                                                      | Néon                                                 | Argon                                                       | Krypton           | Xénon            | Radon                              |
| Couche externe                                                                                               |                                                             |                                                      |                                                             | $4s^2 4p^6$       | $5s^2 5p^6$      | $6s^2 6p^6$                        |
| Nombre d'électrons de valence                                                                                |                                                             |                                                      |                                                             |                   |                  |                                    |
|                                                                                                              |                                                             |                                                      |                                                             | ne peut pas rece  | evoir d'autres   | électrons).                        |
| Cette couche externe o                                                                                       |                                                             |                                                      | `                                                           | F                 |                  | ,                                  |
|                                                                                                              |                                                             |                                                      |                                                             |                   |                  |                                    |
| Contrairement aux gaz sous cette forme, ils ne                                                               |                                                             |                                                      | ı'existent pas r                                            | naturellement so  | ous forme d'atc  | omes isolés, car                   |
|                                                                                                              |                                                             |                                                      |                                                             |                   |                  |                                    |
|                                                                                                              |                                                             |                                                      |                                                             |                   |                  |                                    |
|                                                                                                              |                                                             |                                                      |                                                             |                   |                  |                                    |
| Le seul moyen d'y parve                                                                                      | enir consiste à                                             | former de nou                                        | velles entités :                                            |                   |                  |                                    |
| <u>Remarque</u> : Un groupe électrons est appelé un                                                          |                                                             |                                                      |                                                             |                   |                  |                                    |
| IV <u>Formatio</u>                                                                                           | on des ions                                                 | <u>monoator</u>                                      | <u>niques</u>                                               |                   |                  |                                    |
| Pour se stabiliser, les a<br>Ils forment ainsi des                                                           |                                                             |                                                      |                                                             |                   |                  |                                    |
| Rappel: Si un atome ga<br>S'il perd un ou plusieur                                                           |                                                             |                                                      |                                                             |                   |                  |                                    |
| Exemples:  • Atome de chlor électrons de configuration éle • Atome de magne de magnésium y noble le plus pro | de valence sur s<br>ectronique du g<br>ésium (Z = 12)<br>va | sa couche exter<br>gaz noble le pl<br>: Configuratio | erne. Il va<br>lus proche. Il vo<br>on électronique<br>pour | va former l'ion c | chlorure de form | pour obtenir la<br>nule<br>L'atome |
| Atome de chlore                                                                                              | I                                                           | on chlorure                                          |                                                             | le magnésium      | Io               | n magnésium                        |

| Cl électron                  | ion emorure | Mg    | Siuiii | électron | <b>-</b> | ni illa, | giicsi | um |
|------------------------------|-------------|-------|--------|----------|----------|----------|--------|----|
|                              |             | 1     | ┐ .    | 10       |          |          |        | 10 |
| Les atomes des éléments d'un | P           | du H+ | 2      | 13       | 15       | 16       | 17     | 18 |

Les atomes des éléments d'une du tableau périodique forment des

| $H^+$           | 2                | 13              | 15                  | 16              | 17              | 18 |
|-----------------|------------------|-----------------|---------------------|-----------------|-----------------|----|
| Li <sup>+</sup> | Be <sup>2+</sup> | B <sup>3+</sup> | N <sup>3-</sup>     | O <sup>2-</sup> | F-              | X  |
| Na <sup>+</sup> | $Mg^{2+}$        | $A\ell^{3+}$    | <br>P <sup>3-</sup> | S <sup>2-</sup> | Cℓ <sup>−</sup> |    |

Formules d'ions à connaitre par cœur :

| Cation        | 1       |
|---------------|---------|
| Nom           | Formule |
| Ion hydrogène |         |
| Ion sodium    |         |
| Ion potassium |         |
| Ion magnésium |         |
| Ion calcium   |         |

| Anion        |         |
|--------------|---------|
| Nom          | Formule |
| Ion fluorure |         |
| Ion chlorure |         |
| Ion bromure  |         |
| Ion iodure   |         |

| V <u>Formation des molécules</u>                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Liaison covalente et doublet non liant                                                                                                                                                                                                                                     |
| Pour se stabiliser, les atomes                                                                                                                                                                                                                                                |
| et ainsi avec d'autres atomes. Ils forment alors des                                                                                                                                                                                                                          |
| Chaque atome met en commun avec un autre atome un électron de sa <b>couche de valence</b> . Les deux atomes sont donc « obligés » de rester proches l'un de l'autre et se retrouve liés. Les deux électrons mis en commun entre les deux atomes forment une liaison appelée « |
| •                                                                                                                                                                                                                                                                             |
| Elle se schématise  • Les électrons de valence d'un atome sont réparties en doublet d'électrons appelés  Chaque doublet non liant est représenté  A - B                                                                                                                       |
| Chaque liaison covalente formée apporte un électron supplémentaire à l'atome.  L'atome forme donc                                                                                                                                                                             |
| <ul> <li>Exemples:         <ul> <li>Atome d'azote (Z = 7): Configuration électronique:</li></ul></li></ul>                                                                                                                                                                    |
| La est le nombre de liaisons covalentes qu'il peut former avec d'autres atomes.                                                                                                                                                                                               |

### Valence d'atomes courants à connaître :

| Atome monovalent valence = 1 | Atome divalent valence = 2 | Atome trivalent valence = 3 | Atome tétravalent valence = 4 |
|------------------------------|----------------------------|-----------------------------|-------------------------------|
| Les halogènes :              |                            |                             |                               |

| <ul> <li>Une <u>liaison covalente</u></li></ul>                                                                                                                                                                          | t représentée j                      | par 2 trai | ts (X=X)  | ).         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------|------------|--|
| entre deux atomes, chaque atome fournissant 3 électrons. Elle es                                                                                                                                                         | t représentée j                      | par 3 trai | ts (X≡X)  | •          |  |
| 2) Schéma de Lewis d'une molécule                                                                                                                                                                                        |                                      |            |           |            |  |
| Le                                                                                                                                                                                                                       |                                      |            |           |            |  |
| les <u>doublets non liants</u> sur les atomes.                                                                                                                                                                           |                                      |            |           | tomes et   |  |
| Il permet de                                                                                                                                                                                                             | dans l                               | a molécu   | ıle.      |            |  |
| On peut rapidement vérifier que chaque atome possède la configuration e avec 2 ou 8 électrons de valence. Les électrons des doublets liants appliaison. Les électrons des doublets non liants appartiennent uniquement s | partiennent au                       | ıx deux a  | atomes li | iés par la |  |
| Exemples:  • Schéma de Lewis de la molécule d'eau, de formule H <sub>2</sub> O:                                                                                                                                          |                                      |            |           |            |  |
| HOOH L'atome                                                                                                                                                                                                             | O est entouré                        | de         | électrons | s, avec :  |  |
| L'atoma H naggàda                                                                                                                                                                                                        | liaisons cova                        |            |           |            |  |
| La molécule est                                                                                                                                                                                                          |                                      | mants, s   | OIt       | ciccions   |  |
|                                                                                                                                                                                                                          |                                      |            |           |            |  |
| Schéma de Lewis de la molécule de chlorure d'hydrogène de fo                                                                                                                                                             | rmule HCl :                          |            |           |            |  |
| HOCL                                                                                                                                                                                                                     |                                      |            | _         |            |  |
|                                                                                                                                                                                                                          | est entouré d<br>aison covalen       |            |           |            |  |
| 1                                                                                                                                                                                                                        | oublets non li                       | ,          |           |            |  |
| La molécule est                                                                                                                                                                                                          |                                      |            |           |            |  |
| Schéma de Lewis de la molécule d'acide méthanoïque de form                                                                                                                                                               | ule CO <sub>2</sub> H <sub>2</sub> : |            |           |            |  |
|                                                                                                                                                                                                                          | 1.1                                  |            |           |            |  |
| L'atome O est entouré de électrons, avec                                                                                                                                                                                 |                                      | me C est   |           |            |  |
| • liaisons covalentes, soit électrons électrons, avec liaisons covalentes.                                                                                                                                               |                                      |            |           |            |  |
| (ou une liaison covalente)  • doublets non liants, soit électrons                                                                                                                                                        | lécule est                           |            |           |            |  |
| La IIIO                                                                                                                                                                                                                  | necule est                           | •••••      | ••••      |            |  |
| 3) Solidité d'une liaison covalente                                                                                                                                                                                      |                                      |            |           |            |  |
| En se liant par liaison covalente, deux atomes                                                                                                                                                                           |                                      |            |           |            |  |
| L'énergie de liaison d'une liaison covalente A–B représente                                                                                                                                                              |                                      |            |           |            |  |
|                                                                                                                                                                                                                          |                                      |            |           |            |  |
|                                                                                                                                                                                                                          |                                      |            |           |            |  |
| TI C 1 CC.                                                                                                                                                                                                               | Liaison                              | С-С        | C=C       | C≡C        |  |
| davantage d'énergie pour la rompre.                                                                                                                                                                                      | Energie<br>(×10 <sup>-19</sup> J)    | 6,0        | 10        | 14         |  |
| Seconde Chapitre 7 : La stabilité des éléments ch                                                                                                                                                                        | imiques                              |            |           | 6/6        |  |